model mean median std min max config_key nsteps clusters subjects
1 VAR_grp_w/o 2.667283 2.311391 1.299086 0.841197 8.663879 nsteps=300_clusters=20_subjects=1 300 20 1
2 VAR_grp_w/ 2.130462 1.797232 1.090619 0.826061 7.556795 nsteps=300_clusters=20_subjects=1 300 20 1
3 VAR_ind 2.016944 1.720799 1.039695 0.838965 7.526899 nsteps=300_clusters=20_subjects=1 300 20 1
4 LSTM_grp_w/o 2.552010 2.189134 1.190465 1.140162 9.077024 nsteps=300_clusters=20_subjects=1 300 20 1
5 LSTM_grp_w/ 2.399155 2.104400 1.098909 1.107469 7.647618 nsteps=300_clusters=20_subjects=1 300 20 1
... ... ... ... ... ... ... ... ... ... ...
170 VAR_grp_w/ 1.556520 1.535209 0.341383 0.839781 2.518587 nsteps=1500_clusters=1_subjects=20 1500 1 20
171 VAR_ind 1.544645 1.519936 0.339314 0.845402 2.562656 nsteps=1500_clusters=1_subjects=20 1500 1 20
172 LSTM_grp_w/o 1.390897 1.377687 0.259057 0.786301 2.041435 nsteps=1500_clusters=1_subjects=20 1500 1 20
173 LSTM_grp_w/ 1.390510 1.395509 0.251880 0.840643 2.138441 nsteps=1500_clusters=1_subjects=20 1500 1 20
174 LSTM_ind 1.555531 1.552534 0.307968 0.847127 2.255837 nsteps=1500_clusters=1_subjects=20 1500 1 20

150 rows × 10 columns

mean mse by nsteps for each model¶

mean mse by clusters for each model¶

mean mse by clusters, faceted by nsteps¶

Bad subject count analysis¶

Pick subject whose lstm_w performance is worse than var_w

nsteps clusters bad_subject_count
0 300 20 17
1 300 10 17
2 300 5 16
3 300 2 10
4 300 1 5
5 600 20 15
6 600 10 11
7 600 5 10
8 600 2 3
9 600 1 0
10 900 20 9
11 900 10 8
12 900 5 3
13 900 2 3
14 900 1 0
15 1200 20 10
16 1200 10 7
17 1200 5 2
18 1200 2 1
19 1200 1 0
20 1500 20 5
21 1500 10 6
22 1500 5 3
23 1500 2 3
24 1500 1 0